深入解读JavaScript面向对象编程实践

深入解读JavaScript面向对象编程实践

2016/03/14 · JavaScript
· 4 评论 ·
面向对象

原文出处:
景庄(@ali景庄)   

面向对象编程是用抽象方式创建基于现实世界模型的一种编程模式,主要包括模块化、多态、和封装几种技术。对JavaScript而言,其核心是支持面向对象的,同时它也提供了强大灵活的基于原型的面向对象编程能力。

本文将会深入的探讨有关使用JavaScript进行面向对象编程的一些核心基础知识,包括对象的创建,继承机制,最后还会简要的介绍如何借助ES6提供的新的类机制重写传统的JavaScript面向对象代码。

其实要总结这几个概念已经很久了,只是之前一直都觉得自己还不算完全掌握,而且知识点还不够系统,所以一直拖着,但是最近又重新看了几篇文章,自己也测试了一下,觉得开始有些清晰了,所以想在这里给自己做个总结吧,也希望在学的你们能够在这里学到一点东西。不要急躁,慢慢看,一边看一边做测试,这也是我最近的感悟。看了不一定会,要真正自己动手去测试一下。

面向对象的几个概念

在进入正题前,先了解传统的面向对象编程(例如Java)中常会涉及到的概念,大致可以包括:

  • 类:定义对象的特征。它是对象的属性和方法的模板定义。
  • 对象(或称实例):类的一个实例。
  • 属性:对象的特征,比如颜色、尺寸等。
  • 方法:对象的行为,比如行走、说话等。
  • 构造函数:对象初始化的瞬间被调用的方法。
  • 继承:子类可以继承父类的特征。例如,猫继承了动物的一般特性。
  • 封装:一种把数据和相关的方法绑定在一起使用的方法。
  • 抽象:结合复杂的继承、方法、属性的对象能够模拟现实的模型。
  • 多态:不同的类可以定义相同的方法或属性。

在JavaScript的面向对象编程中大体也包括这些。不过在称呼上可能稍有不同,例如,JavaScript中没有原生的“类”的概念,
而只有对象的概念。因此,随着你认识的深入,我们会混用对象、实例、构造函数等概念。

什么是对象?

我的理解就是这是一个存储灌,你可以在里面存储任何东西,这些东西就是我们之前学的各种js里面的数据类型,然后给每一个名字贴上一个名字,方便我们以后找到。

例子:

//这个myFirstObject里面有两个属性,分别是firstName和 favoriteAuthor
var myFirstObject = {firstName: "Richard", favoriteAuthor: "Conrad"};

对象(类)的创建

在JavaScript中,我们通常可以使用构造函数来创建特定类型的对象。诸如Object和Array这样的原生构造函数,在运行时会自动出现在执行环境中。
此外,我们也可以创建自定义的构造函数。例如:

function Person(name, age, job) { this.name = name; this.age = age;
this.job = job; } var person1 = new Person(‘Weiwei’, 27, ‘Student’); var
person2 = new Person(‘Lily’, 25, ‘Doctor’);

1
2
3
4
5
6
7
8
function Person(name, age, job) {
  this.name = name;
  this.age = age;
  this.job = job;
}
 
var person1 = new Person(‘Weiwei’, 27, ‘Student’);
var person2 = new Person(‘Lily’, 25, ‘Doctor’);

按照惯例,构造函数始终都应该以一个大写字母开头(和Java中定义的类一样),普通函数则小写字母开头。
要创建Person的新实例,必须使用new操作符。以这种方式调用构造函数实际上会经历以下4个步骤:

  1. 创建一个新对象(实例)
  2. 将构造函数的作用域赋给新对象(也就是重设了this的指向,this就指向了这个新对象)
  3. 执行构造函数中的代码(为这个新对象添加属性)
  4. 返回新对象

有关new操作符的更多内容请参考这篇文档。

在上面的例子中,我们创建了Person的两个实例person1person2
这两个对象默认都有一个constructor属性,该属性指向它们的构造函数Person,也就是说:

console.log(person1.constructor == Person); //true
console.log(person2.constructor == Person); //true

1
2
console.log(person1.constructor == Person);  //true
console.log(person2.constructor == Person);  //true

如何定义一个对象?

  • 对象字面量
  • 构造函数创建
  • 原型模式创建

自定义对象的类型检测

我们可以使用instanceof操作符进行类型检测。我们创建的所有对象既是Object的实例,同时也是Person的实例。
因为所有的对象都继承自Object

console.log(person1 instanceof Object); //true console.log(person1
instanceof Person); //true console.log(person2 instanceof Object);
//true console.log(person2 instanceof Person); //true

1
2
3
4
console.log(person1 instanceof Object);  //true
console.log(person1 instanceof Person);  //true
console.log(person2 instanceof Object);  //true
console.log(person2 instanceof Person);  //true
对象字面量创建对象

这是最原始的方法,但是也不利于后面的多个对象的创建。

//这是一个mango对象,这个对象里面有color shape sweetness属性以及一个​howSweetAmI的方法
​var mango = {
color: "yellow",
shape: "round",
sweetness: 8,
​
​howSweetAmI: function () {
console.log("Hmm Hmm Good");
}
}

构造函数的问题

我们不建议在构造函数中直接定义方法,如果这样做的话,每个方法都要在每个实例上重新创建一遍,这将非常损耗性能。
——不要忘了,ECMAScript中的函数是对象,每定义一个函数,也就实例化了一个对象。

幸运的是,在ECMAScript中,我们可以借助原型对象来解决这个问题。

缺点:这种方法虽然简单明了,但是试想一下,如果我们要定义各种各样的水果对象,每一个水果都有color shape sweetnees的属性,我们都要一个个定义是不是会有点麻烦呢?

那看看下面这种构造函数的创建方法

借助原型模式定义对象的方法

我们创建的每个函数都有一个prototype属性,这个属性是一个指针,指向该函数的原型对象
该对象包含了由特定类型的所有实例共享的属性和方法。也就是说,我们可以利用原型对象来让所有对象实例共享它所包含的属性和方法。

function Person(name, age, job) { this.name = name; this.age = age;
this.job = job; } // 通过原型模式来添加所有实例共享的方法 // sayName()
方法将会被Person的所有实例共享,而避免了重复创建
Person.prototype.sayName = function () { console.log(this.name); }; var
person1 = new Person(‘Weiwei’, 27, ‘Student’); var person2 = new
Person(‘Lily’, 25, ‘Doctor’); console.log(person1.sayName ===
person2.sayName); // true person1.sayName(); // Weiwei
person2.sayName(); // Lily

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
function Person(name, age, job) {
  this.name = name;
  this.age = age;
  this.job = job;
}
 
// 通过原型模式来添加所有实例共享的方法
// sayName() 方法将会被Person的所有实例共享,而避免了重复创建
Person.prototype.sayName = function () {
  console.log(this.name);
};
 
var person1 = new Person(‘Weiwei’, 27, ‘Student’);
var person2 = new Person(‘Lily’, 25, ‘Doctor’);
 
console.log(person1.sayName === person2.sayName); // true
 
person1.sayName(); // Weiwei
person2.sayName(); // Lily

正如上面的代码所示,通过原型模式定义的方法sayName()为所有的实例所共享。也就是,
person1person2访问的是同一个sayName()函数。同样的,公共属性也可以使用原型模式进行定义。例如:

function Chinese (name) { this.name = name; } Chinese.prototype.country
= ‘China’; // 公共属性,所有实例共享

1
2
3
4
5
function Chinese (name) {
    this.name = name;
}
 
Chinese.prototype.country = ‘China’; // 公共属性,所有实例共享

考虑用构造函数的创建方法

构造函数创建方法,就是定义一个构造函数,然后在里面设置属性和方法值,然后再用new去实例化对象,所有实例化的对象都会有构造函数里面的属性和方法。

//在这里定义一个构造函数,在构造函数里面定义属性和方法,注意这里需要用this,后面就可以通过new来实例化对象,使用new的时候,就会将this指向这个实例化的对象。

function Fruit (theColor, theSweetness, theFruitName, theNativeToLand) {
​    this.type = "水果"
    this.color = theColor;
    this.sweetness = theSweetness;
    this.fruitName = theFruitName;
    this.nativeToLand = theNativeToLand;
​
    this.showName = function () {
        console.log("This is a " + this.fruitName);
    }
​
    this.nativeTo = function () {
    this.nativeToLand.forEach(function (eachCountry)  {
       console.log("Grown in:" + eachCountry);
        });
    }

}

原型对象

现在我们来深入的理解一下什么是原型对象。

只要创建了一个新函数,就会根据一组特定的规则为该函数创建一个prototype属性,这个属性指向函数的原型对象。
在默认情况下,所有原型对象都会自动获得一个constructor属性,这个属性包含一个指向prototype属性所在函数的指针。
也就是说:Person.prototype.constructor指向Person构造函数。

创建了自定义的构造函数之后,其原型对象默认只会取得constructor属性;至于其他方法,则都是从Object继承而来的。
当调用构造函数创建一个新实例后,该实例内部将包含一个指针(内部属性),指向构造函数的原型对象。ES5中称这个指针为[[Prototype]]
在Firefox、Safari和Chrome在每个对象上都支持一个属性__proto__(目前已被废弃);而在其他实现中,这个属性对脚本则是完全不可见的。
要注意,这个链接存在于实例与构造函数的原型对象之间,而不是实例与构造函数之间

这三者关系的示意图如下:

图片 1

上图展示了Person构造函数、Person的原型对象以及Person现有的两个实例之间的关系。

  • Person.prototype指向了原型对象
  • Person.prototype.constructor又指回了Person构造函数
  • Person的每个实例person1person2都包含一个内部属性(通常为__proto__),person1.__proto__person2.__proto__指向了原型对象

接下来,我们就可以直接用new的方法来创建各种各样的水果对象了。

//创建一个芒果的对象。
var mangoFruit = new Fruit ("Yellow", 8, "Mango", ["South America", "Central America", "West Africa"]);
mangoFruit.showName(); // This is a Mango.​
mangoFruit.nativeTo();
​//Grown in:South America​
​// Grown in:Central America​
​// Grown in:West Africa​
​
//创建一个pineappleFruit的对象。
​var pineappleFruit = new Fruit ("Brown", 5, "Pineapple", ["United States"]);
pineappleFruit.showName(); // This is a Pineapple.

是不是很方便,可以把构造函数想象成一个大工厂,然后你只要使用new的方法去调用这个工厂,就相当于告诉这个工厂给我生产一个东西出来,那么这个工厂就会用所有自己有的设备,把它所有的东西能生产的都生产出来。所以只要在这个工厂上的设备能生产出来的都会被生产。

再来思考一个问题,这些实例化对象之间是不是其实都是有相似性的,就是你可以提炼出其中相同的属性和方法。像上面那个例子,所有水果的type属性和showName方法是不是都是一样的呢?那我们是不是可以用原型来写?

查找对象属性

从上图我们发现,虽然Person的两个实例都不包含属性和方法,但我们却可以调用person1.sayName()
这是通过查找对象属性的过程来实现的。

  1. 搜索首先从对象实例本身开始(实例person1sayName属性吗?——没有)
  2. 如果没找到,则继续搜索指针指向的原型对象person1.__proto__sayName属性吗?——有)

这也是多个对象实例共享原型所保存的属性和方法的基本原理。

注意,如果我们在对象的实例中重写了某个原型中已存在的属性,则该实例属性会屏蔽原型中的那个属性。
此时,可以使用delete操作符删除实例上的属性。

什么是原型?prototype

js中每一个函数都会有自己的一个原型对象,这个原型对象叫做prototype.而所有通过这个构造函数实例化的对象都会指向这个原型。其实你可以设想一下,构造函数是工厂的话,原型其实是不是可以是仓库,所有实例化的对象就可以从仓库里面拿东西。所以我们可以把所有对象公用的属性和方法给放在prototype下面,这样就可以避免属性和方法的重复定义。下面用一个例子和图来说明一下。

//这里我们使用原型来创建对象,所有对象共用的属性和方法就放在prototype上。
function Person(name, age, job) {
  this.name = name;
  this.age = age;
  this.job = job;
}

// 通过原型模式来添加所有实例共享的方法
// sayName() 方法将会被Person的所有实例共享,而避免了重复创建
Person.prototype.sayName = function () {
  console.log(this.name);
};

var person1 = new Person('Weiwei', 27, 'Student');
var person2 = new Person('Lily', 25, 'Doctor');
person1.sayName(); // Weiwei
person2.sayName(); // Lily

实例化的对象中的name age
job属性是从构造函数那得到的,而实例化的对象的原型指向了构造函数的原型对象,所以也会有sayName方法。

image.png

//注意,这里是输出true,所以其实person1和person2的sayName方法都是同一个,来自同一个地址。

console.log(person1.sayName === person2.sayName); // true

Object.getPrototypeOf()

根据ECMAScript标准,someObject.[[Prototype]] 符号是用于指派
someObject 的原型。
这个等同于 JavaScript 的 __proto__ 属性(现已弃用)。
从ECMAScript 5开始, [[Prototype]]
可以用Object.getPrototypeOf()Object.setPrototypeOf()访问器来访问。

其中Object.getPrototypeOf()在所有支持的实现中,这个方法返回[[Prototype]]的值。例如:

person1.__proto__ === Object.getPrototypeOf(person1); // true
Object.getPrototypeOf(person1) === Person.prototype; // true

1
2
person1.__proto__ === Object.getPrototypeOf(person1); // true
Object.getPrototypeOf(person1) === Person.prototype; // true

也就是说,Object.getPrototypeOf(p1)返回的对象实际就是这个对象的原型。
这个方法的兼容性请参考该链接)。

小小的总结一下:

对象有三种不同的创建方式,对象字面量,构造函数,结合原型来创建,最有效的也就是第三种创建方式了,避免相同属性和方法的重复创建,所以可以将对象公用
的属性和方法定义在prototype上。

Object.keys()

要取得对象上所有可枚举的实例属性,可以使用ES5中的Object.keys()方法。例如:

Object.keys(p1); // [“name”, “age”, “job”]

1
Object.keys(p1); // ["name", "age", "job"]

此外,如果你想要得到所有实例属性,无论它是否可枚举,都可以使用Object.getOwnPropertyName()方法。

!!!!注意!!!!

如果使用原型继承的话,如果有多个对象和属性要同时一起定义的话,需要注意将原型prototype的constructor属性重新赋值,是不是听不懂了,别急,先看第一个例子,再看我们后面改进的。

例子1

//这是我们定义水果的属性和方法
function Fruit () {
​
}
​//一个一个使用Fruit.prototype来一一定义各个属性和方法。
Fruit.prototype.color = "Yellow";
Fruit.prototype.sweetness = 7;
Fruit.prototype.fruitName = "Generic Fruit";
Fruit.prototype.nativeToLand = "USA";
​
Fruit.prototype.showName = function () {
console.log("This is a " + this.fruitName);
}
​
Fruit.prototype.nativeTo = function () {
            console.log("Grown in:" + this.nativeToLand);
}

上面的方法虽然也是可行的,但是如果属性和方法太多的话,是不是太低效了。

更简单的原型创建方法:

function Fruit () {
​
}
​//一个一个使用Fruit.prototype来一一定义各个属性和方法。
Fruit.prototype= {
//这里一定要将prototype的constructor属性重新指向Fruit。因为我们这样相当于是重写了prototype的值。
constructor: Fruit,
color = "Yellow";
sweetness = 7;
fruitName = "Generic Fruit";
showName = function () {
console.log("This is a " + this.fruitName);
}
nativeTo = function () {
            console.log("Grown in:" + this.nativeToLand);
}
}

上面的例子看懂了吗?就是每一个构造函数的prototype属性都会自带有一个constructor属性,这个constructor属性又指向了构造函数,所以我们像上面那样定义的时候,也要将这个constructor属性给重新指向构造函数。(可以重新看一下上面我给出的那个图)

更简单的原型语法

在上面的代码中,如果我们要添加原型属性和方法,就要重复的敲一遍Person.prototype。为了减少这个重复的过程,
更常见的做法是用一个包含所有属性和方法的对象字面量来重写整个原型对象。
参考资料。

function Person(name, age, job) { this.name = name; this.age = age;
this.job = job; } Person.prototype = { //
这里务必要重新将构造函数指回Person构造函数,否则会指向这个新创建的对象
constructor: Person, // Attention! sayName: function () {
console.log(this.name); } }; var person1 = new Person(‘Weiwei’, 27,
‘Student’); var person2 = new Person(‘Lily’, 25, ‘Doctor’);
console.log(person1.sayName === person2.sayName); // true
person1.sayName(); // Weiwei person2.sayName(); // Lily

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
function Person(name, age, job) {
  this.name = name;
  this.age = age;
  this.job = job;
}
 
Person.prototype = {
 
  // 这里务必要重新将构造函数指回Person构造函数,否则会指向这个新创建的对象
  constructor: Person, // Attention!
 
  sayName: function () {
    console.log(this.name);
  }
};
 
var person1 = new Person(‘Weiwei’, 27, ‘Student’);
var person2 = new Person(‘Lily’, 25, ‘Doctor’);
 
console.log(person1.sayName === person2.sayName); // true
 
person1.sayName();  // Weiwei
person2.sayName();  // Lily

在上面的代码中特意包含了一个constructor属性,并将它的值设置为Person,从而确保了通过该属性能够访问到适当的值。
注意,以这种方式重设constructor属性会导致它的[[Enumerable]]特性设置为true。默认情况下,原生的constructor属性是不可枚举的。
你可以使用Object.defineProperty()

// 重设构造函数,只适用于ES5兼容的浏览器
Object.defineProperty(Person.prototype, “constructor”, { enumerable:
false, value: Person });

1
2
3
4
5
// 重设构造函数,只适用于ES5兼容的浏览器
Object.defineProperty(Person.prototype, "constructor", {
  enumerable: false,
  value: Person
});

如何读取对象的属性:

// We have been using dot notation so far in the examples above, here is another example again:​
​var book = {title: "Ways to Go", pages: 280, bookMark1:"Page 20"};
​
​// To access the properties of the book object with dot notation, you do this:​
console.log ( book.title); // Ways to Go​
console.log ( book.pages); // 280


//当然,也可以用方括号来写:
console.log ( book["title"]); //Ways to Go​
console.log ( book["pages"]); // 280​

组合使用构造函数模式和原型模式

创建自定义类型的最常见方式,就是组合使用构造函数模式与原型模式。构造函数模式用于定义实例属性,
而原型模式用于定义方法和共享的属性。结果,每个实例都会有自己的一份实例属性的副本,但同时又共享着对方的引用,
最大限度的节省了内存。

如何实现对象的继承:

  • 原型继承
  • 构造函数继承
  • 原型和构造函数继承
  • 创建空对象方法

原型继承:

  • 构造函数都有一个指向原型对象的指针
  • 原型对象都有一个指向构造函数的constructor
  • 实例化对象都有一个指向原型的[[prototype]]属性

function Father () {
  this.fatherValue = true;
}

Father.prototype.getFatherValue = function () {
  console.log(this.fatherValue);
};

function Child () {
  this.childValue = false;
}

// 实现继承:继承自Father
Child.prototype = new Father();

Child.prototype.getChildValue = function () {
  console.log(this.childValue);
};

var instance = new Child();
instance.getFatherValue(); // true
instance.getChildValue();  // false

上面的关键点就是用“`Child.prototype = new Father();

![image.png](http://upload-images.jianshu.io/upload_images/5763769-c4014978c0314834.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

可以看一下这一个原型链的一个搜索的过程:

var instance = new Child();
instance.getFatherValue(); // true
instance.getChildValue(); // false

当我们查找```instance.getFatherValue(); ```的时候,是如何一个查找的过程呢?

- 先看一下instance 实例上有没有,没有则继续
- Chile prototype上查找有没有,也没有该方法,则继续向上查找
- 向上查找的是Father prototype的属性和方法,查找到了,则输出。

>这种原型继承的方法,其实就相当于延长了Child的原型链,因为其原型现在又可以再向上查找到Father的原型,相当于延长原型链之后可以继续再向上去查找到Father原型上的属性和方法。

#####思考一下:这其实也给了我们一个提示,如果实例,原型上有相同的方法的话,我们一般读取该属性的时候,也是直接读取到了实例上的属性和方法,除非实例本身没有,才会继续往上查找。

####缺点:
这个方法其实也是有缺点的,因为Child的实例化对象的一些属性和方法都是在该原型链上查找的,所以一些引用值得修改也会影响到所有实例化对象的属性,先看个例子。

function father(name,age) {
this.name = name
this.age = age
this.friends = [“lili”,”koko”]
}
father.prototype.sayname = function () {
console.log(this.name)
}
function children(school) {
this.school = school
}
children.prototype = new father()
children.prototype.sayname = function () {
console.log(“我就是不说自己的名字”)
}
var instance = new children(“幼儿园”)
var instance2 = new children(“幼儿园”)
//这里我们修改了instance的friends的值
instance.friends.push(“yoyo”)
//我们输出children的两个实例对象试一下,看看两个的属性值的区别
console.log(instance)
console.log(instance2)

![instance的输出.png](http://upload-images.jianshu.io/upload_images/5763769-2bbc0a638ee61a39.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

![instance2的输出.png](http://upload-images.jianshu.io/upload_images/5763769-b2e3d6d0c8f39176.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

其实从上面两个图也可以发现,一旦修改了一个实例对象上的一个引用值,其他实例化对象的属性值也跟着变化了。因为这里的friends是引用类型的数据,所有的实例都会共享这个属性值,一旦修改其他也跟着修改了。

####构造函数继承

function Animal(){
    this.species = “动物”;
  }
Animal.prototype.say = function(){console.log(“hahaha”)}
 function Cat(name,color){
//这里使用的是构造函数的继承,调用Animal构造函数,再用apply将this指向Cat本身
    Animal.apply(this, arguments);
    this.name = name;
    this.color = color;
  }
  var cat1 = new Cat(“大毛”,”黄色”);
  alert(cat1.species); // 动物
//这样的话Cat的实例化对象就都有Animal的属性了。

>//Cat这个实例化对象就有Animal的属性,但是不会继承来自于Animal原型上的方法。

![image.png](http://upload-images.jianshu.io/upload_images/5763769-49c23d31a71c5e79.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

>构造函数的好处是可以在调用的时候输入参数,```Animal.apply(this, arguments);
```这里可以重新将Cat的参数赋值给Animal中的构造函数。但是这样其实还是有不好之处就是每次新生成一个实例化对象的时候,就会调用一次构造函数。除此之外,Cat并不能继承来自于Animal原型上的方法,这不能实现方法上的复用。

所以,我们可以考虑结合原型方法和构造函数方法。

刚刚是不是说到,只使用原型方法的话,继承父类的所有属性和方法,但是所有实例没有自己的属性,可能会因为一个实例的属性的更改而影响到其他实例;而构造函数的方法只能实现构造函数内的属性方法继承,不能实现父类原型上的继承;;

那就结合这两种方法来实现以下;

// 父类构造函数
function Person (name, age, job) {
this.name = name;
this.age = age;
this.job = job;
}

// 父类方法
Person.prototype.sayName = function () {
console.log(this.name);
};

// ————–

// 子类构造函数
function Student (name, age, job, school) {
// 继承父类的所有实例属性(获得父类构造函数中的属性)
Person.call(this, name, age, job);
this.school = school; // 添加新的子类属性
}

// 继承父类的原型方法(获得父类原型链上的属性和方法)
Student.prototype = new Person();

// 新增的子类方法
Student.prototype.saySchool = function () {
console.log(this.school);
};

var person1 = new Person(‘Weiwei’, 27, ‘Student’);
var student1 = new Student(‘Lily’, 25, ‘Doctor’, “Southeast
University”);

console.log(person1.sayName === student1.sayName); // true

person1.sayName(); // Weiwei
student1.sayName(); // Lily
student1.saySchool(); // Southeast University

![image.png](http://upload-images.jianshu.io/upload_images/5763769-508d69653dfb5c9f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

这个就是比较好的继承方法,将父类的属性继承过来,所有的实例都有自己的属性,同时将原型上的方法也继承过来,实现所有实例都有公共的属性和方法。当然,细心的你也许已经发现了,就是这个Student子类的原型上除了有saySchool方法之外,还有父类构造函数内的那些name job age属性,那是因为我们是使用```Student.prototype = new Person();```来实现继承的,所以该原型实际上就是Person的实例;

所以其实这个方法虽然是好,但是也会出现这样一个情况,属性的覆盖,原型上还有对应父类的属性。这也不是我们最初想要的结果。

所以,我们又引入了另外一个方法

####利用中间空对象的方法继承。
>什么意思呢?我们上面的结合原型和构造函数的方法之所以会出现原型上还有相同的属性的问题是因为,我们用```Student.prototype = new Person();```来实现继承,相当于把Student.prototype重新赋值成Person的实例了,我们就肯定会有Person 构造函数上的属性和原型上的方法。那么我们要的最理想的状态就是用```Student.prototype = new Person();```的时候,Person的构造函数上没有属性,但是这显然不够理智,那么我们就可以引入一个中间的空对象,来实现继承。
啊啊啊,还是看例子吧。

//如果这样子的话,是不是很完美,Child的原型是F的一个实例,而F的构造函数我们是设置成空的。
var F = function(){};
F.prototype = Parent.prototype;
Child.prototype = new F();

>所以我们可以用这样的方式来封装起来以后可以使用‘

//这个就是Child继承Parent的方法。
function extend(Child, Parent) {
    var F = function(){};
    F.prototype = Parent.prototype;
    Child.prototype = new F();
    Child.prototype.constructor = Child;
    Child.uber = Parent.prototype;
  }

我们再来写个例子吧;

// 父类构造函数
function Person (name, age, job) {
this.name = name;
this.age = age;
this.job = job;
}

// 父类方法
Person.prototype.sayName = function () {
console.log(this.name);
};

// ————–

// 子类构造函数
function Student (name, age, job, school) {
// 继承父类的所有实例属性(获得父类构造函数中的属性)
Person.call(this, name, age, job);
this.school = school; // 添加新的子类属性
}

function extend(Child, Parent) {
    var F = function(){};
    F.prototype = Parent.prototype;
    Child.prototype = new F();
    Child.prototype.constructor = Child;
    Child.uber = Parent.prototype;
  }
extend( Student,Person);
//调用该方法,实现继承父类原型链上的属性和方法;

// 新增的子类方法
Student.prototype.saySchool = function () {
console.log(this.school);
};

var person1 = new Person(‘Weiwei’, 27, ‘Student’);
var student1 = new Student(‘Lily’, 25, ‘Doctor’, “Southeast
University”);

console.log(person1.sayName === student1.sayName); // true

person1.sayName(); // Weiwei
student1.sayName(); // Lily
student1.saySchool(); // Southeast University
console.log(student1)

![image.png](http://upload-images.jianshu.io/upload_images/5763769-e762216f5426ad1e.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

>这样继承是不是好多了,至少跟前面的例子相比,我们的原型链上不会再继承来自父类上的属性;



>后面还有方法会继续总结的,今天先写到这里好了,感觉自己写的过程真的会发现很不一样,也算是了解多了一些。


参考链接:
JavaScript Objects in Detail
http://javascriptissexy.com/javascript-prototype-in-plain-detailed-language/# http://javascriptissexy.com/oop-in-javascript-what-you-need-to-know/# http://www.ruanyifeng.com/blog/2010/05/object-oriented_javascript_inheritance.html

继承

大多的面向对象语言都支持两种继承方式:接口继承和实现继承。ECMAScript只支持实现继承,而且其实现继承主要依靠原型链来实现。

原型链继承

使用原型链作为实现继承的基本思想是:利用原型让一个引用类型继承另一个引用类型的属性和方法。首先我们先回顾一些基本概念:

  • 每个构造函数都有一个原型对象(prototype
  • 原型对象包含一个指向构造函数的指针(constructor
  • 实例都包含一个指向原型对象的内部指针([[Prototype]]

如果我们让原型对象等于另一个类型的实现,结果会怎么样?显然,此时的原型对象将包含一个指向另一个原型的指针
相应的,另一个原型中也包含着一个指向另一个构造函数的指针。假如另一个原型又是另一个类型的实例,那么上述关系依然成立,
如此层层递进,就构成了实例与原型的链条。
更详细的内容可以参考这个链接。
先看一个简单的例子,它演示了使用原型链实现继承的基本框架:

function Father () { this.fatherValue = true; }
Father.prototype.getFatherValue = function () {
console.log(this.fatherValue); }; function Child () { this.childValue =
false; } // 实现继承:继承自Father Child.prototype = new Father();
Child.prototype.getChildValue = function () {
console.log(this.childValue); }; var instance = new Child();
instance.getFatherValue(); // true instance.getChildValue(); // false

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
function Father () {
  this.fatherValue = true;
}
 
Father.prototype.getFatherValue = function () {
  console.log(this.fatherValue);
};
 
function Child () {
  this.childValue = false;
}
 
// 实现继承:继承自Father
Child.prototype = new Father();
 
Child.prototype.getChildValue = function () {
  console.log(this.childValue);
};
 
var instance = new Child();
instance.getFatherValue(); // true
instance.getChildValue();  // false

在上面的代码中,原型链继承的核心语句是Child.prototype = new Father(),它实现了ChildFather的继承,
而继承是通过创建Father的实例,并将该实例赋给Child.prototype实现的。

实现的本质是重写原型对象,代之以一个新类型的实例。也就是说,原来存在于Father的实例中的所有属性和方法,
现在也存在于Child.prototype中了。

这个例子中的实例以及构造函数和原型之间的关系如下图所示:

图片 2

在上面的代码中,我们没有使用Child默认提供的原型,而是给它换了一个新原型;这个新原型就是Father的实例。
于是,新原型不仅具有了作为一个Father的实例所拥有的全部属性和方法。而且其内部还有一个指针[[Prototype]],指向了Father的原型。

  • instance指向Child的原型对象
  • Child的原型对象指向Father的原型对象
  • getFatherValue()方法仍然还在Father.prototype
  • 但是,fatherValue则位于Child.prototype
  • instance.constructor现在指向的是Father

因为fatherValue是一个实例属性,而getFatherValue()则是一个原型方法。既然Child.prototype现在是Father的实例,
那么fatherValue当然就位于该实例中。

通过实现原型链,本质上扩展了本章前面介绍的原型搜索机制。例如,instance.getFatherValue()会经历三个搜索步骤:

  1. 搜索实例
  2. 搜索Child.prototype
  3. 搜索Father.prototype
You can leave a response, or trackback from your own site.

Leave a Reply

网站地图xml地图