C#语法——await与async的正确打开方式

C#5.0推出了新语法,await与async,但相信大家还是很少使用它们。关于await与async有很多文章讲解,但有没有这样一种感觉,你看完后,总感觉这东西很不错,但用的时候,总是想不起来,或者不知道该怎么用。

下文以个人对async/await的理解为基础进行一些说明。

  1. 调用流阻塞:不同于线程阻塞,调用流阻塞只对函数过程起作用,调用流阻塞表示在一次函数调用中,执行函数代码的过程中发生的无法继续往后执行,需要在函数体中的某个语句停止的情形;

C#中 Thread,Task,Async/Await,IAsyncResult 的那些事儿!,

说起异步,Thread,Task,async/await,IAsyncResult
这些东西肯定是绕不开的,今天就来依次聊聊他们

为什么呢?我觉得大家的await与async的打开方式不正确。

  1. 调用流阻塞点:调用流阻塞中,执行流所停下来地方的那条语句;
  2. 调用流阻塞返回:不同于线程阻塞,调用流发生阻塞的时候,调用流会立即返回,在C#中,返回的对象可以是Task或者Task<T>
  3. 调用流阻塞异步完成跳转:当调用流阻塞点处的异步操作完成后,调用流被强制跳转回调用流阻塞点处执行下一个语句的情形;
  4. async传染:指的是根据C#的规定:若某个函数F的函数体中需要使用await关键字的函数必须以async标记,进一步导致需要使用await调用F的那个函数F’也必须以async标记的情况;
  5. Task对象的装箱与拆箱:指Task<T>和T能够相互转换的情况。
  6. 异步调用:指以await作为修饰前缀进行方法调用的调用形式,异步调用时会发生调用流阻塞。
  7. 同步调用:指不以await作为修饰前缀进行方法调用的调用形式,同步调用时不会发生调用流阻塞。

1.线程(Thread)

多线程的意义在于一个应用程序中,有多个执行部分可以同时执行;对于比较耗时的操作(例如io,数据库操作),或者等待响应(如WCF通信)的操作,可以单独开启后台线程来执行,这样主线程就不会阻塞,可以继续往下执行;等到后台线程执行完毕,再通知主线程,然后做出对应操作!

在C#中开启新线程比较简单

static void Main(string[] args)
{
    Console.WriteLine("主线程开始");
    //IsBackground=true,将其设置为后台线程
    Thread t = new Thread(Run) { IsBackground = true };
    t.Start();
   Console.WriteLine("主线程在做其他的事!");
    //主线程结束,后台线程会自动结束,不管有没有执行完成
    //Thread.Sleep(300);
    Thread.Sleep(1500);
    Console.WriteLine("主线程结束");
}
static void Run()
{
    Thread.Sleep(700);
    Console.WriteLine("这是后台线程调用");
}

 执行结果如下图,

图片 1

可以看到在启动后台线程之后,主线程继续往下执行了,并没有等到后台线程执行完之后。

 正确的打开方式

async/await用于异步操作。

1.1 线程池

试想一下,如果有大量的任务需要处理,例如网站后台对于HTTP请求的处理,那是不是要对每一个请求创建一个后台线程呢?显然不合适,这会占用大量内存,而且频繁地创建的过程也会严重影响速度,那怎么办呢?线程池就是为了解决这一问题,把创建的线程存起来,形成一个线程池(里面有多个线程),当要处理任务时,若线程池中有空闲线程(前一个任务执行完成后,线程不会被回收,会被设置为空闲状态),则直接调用线程池中的线程执行(例asp.net处理机制中的Application对象),

使用事例:

for (int i = 0; i < 10; i++)
{
    ThreadPool.QueueUserWorkItem(m =>
    {
        Console.WriteLine(Thread.CurrentThread.ManagedThreadId.ToString());
    });
}
Console.Read();

运行结果:

图片 2

可以看到,虽然执行了10次,但并没有创建10个线程。

 

在使用C#编写GUI程序的时候,如果有比较耗时的操作(如图片处理、数据压缩等),我们一般新开一个线程把这些工作交给这个线程处理,而不放到主线程中进行操作,以免阻塞UI刷新,造成程序假死。

 1.2 信号量(Semaphore)

 Semaphore负责协调线程,可以限制对某一资源访问的线程数量

 这里对SemaphoreSlim类的用法做一个简单的事例:

static SemaphoreSlim semLim = new SemaphoreSlim(3); //3表示最多只能有三个线程同时访问
static void Main(string[] args)
{
    for (int i = 0; i < 10; i++)
    {
        new Thread(SemaphoreTest).Start();
    }
    Console.Read();
}
static void SemaphoreTest()
{
    semLim.Wait();
    Console.WriteLine("线程" + Thread.CurrentThread.ManagedThreadId.ToString() + "开始执行");
    Thread.Sleep(2000);
    Console.WriteLine("线程" + Thread.CurrentThread.ManagedThreadId.ToString() + "执行完毕");
    semLim.Release();
}

执行结果如下:

图片 3图片 4

可以看到,刚开始只有三个线程在执行,当一个线程执行完毕并释放之后,才会有新的线程来执行方法!

除了SemaphoreSlim类,还可以使用Semaphore类,感觉更加灵活,感兴趣的话可以搜一下,这里就不做演示了!

首先看下使用约束。

传统的做法是直接使用C#的Thread类(也存在别的方式,参考这篇文章)进行操作。传统的做法在复杂的应用编写中可能会出现回调地狱的问题,因此C#目前主要推荐使用async/await来进行异步操作。

2.Task

Task是.NET4.0加入的,跟线程池ThreadPool的功能类似,用Task开启新任务时,会从线程池中调用线程,而Thread每次实例化都会创建一个新的线程。

Console.WriteLine("主线程启动");
//Task.Run启动一个线程
//Task启动的是后台线程,要在主线程中等待后台线程执行完毕,可以调用Wait方法
//Task task = Task.Factory.StartNew(() => { Thread.Sleep(1500); Console.WriteLine("task启动"); });
Task task = Task.Run(() => { 
    Thread.Sleep(1500);
    Console.WriteLine("task启动");
});
Thread.Sleep(300);
task.Wait();
Console.WriteLine("主线程结束");

执行结果如下:

图片 5

开启新任务的方法:Task.Run()或者Task.Factory.StartNew(),开启的是后台线程

要在主线程中等待后台线程执行完毕,可以使用Wait方法(会以同步的方式来执行)。不用Wait则会以异步的方式来执行。

比较一下Task和Thread:

static void Main(string[] args)
{
    for (int i = 0; i < 5; i++)
    {
        new Thread(Run1).Start();
    }
    for (int i = 0; i < 5; i++)
    {
        Task.Run(() => { Run2(); });
    }
}
static void Run1()
{
    Console.WriteLine("Thread Id =" + Thread.CurrentThread.ManagedThreadId);
}
static void Run2()
{
    Console.WriteLine("Task调用的Thread Id =" + Thread.CurrentThread.ManagedThreadId);
}

执行结果:

图片 6

可以看出来,直接用Thread会开启5个线程,用Task(用了线程池)开启了3个!

1、await 只能在标记了async的函数内使用。

async/await通过对方法进行修饰把C#中的方法分为同步方法和异步方法两类,异步方法命名约定以Async结尾。但是需要注意的是,在调用异步方法的时候,并非一定是以异步方式来进行调用,只有指定了以await为修饰前缀的方法调用才是异步调用

2.1 Task<TResult>

Task<TResult>就是有返回值的Task,TResult就是返回值类型。

Console.WriteLine("主线程开始");
//返回值类型为string
Task<string> task = Task<string>.Run(() => {
    Thread.Sleep(2000); 
    return Thread.CurrentThread.ManagedThreadId.ToString(); 
});
//会等到task执行完毕才会输出;
Console.WriteLine(task.Result);
Console.WriteLine("主线程结束");

运行结果:

图片 7

通过task.Result可以取到返回值,若取值的时候,后台线程还没执行完,则会等待其执行完毕!

简单提一下:

Task任务可以通过CancellationTokenSource类来取消,感觉用得不多,用法比较简单,感兴趣的话可以搜一下!

2、await 等待的函数必须标记async。

考虑以下C#程序:

 3. async/await

async/await是C#5.0中推出的,先上用法:

static void Main(string[] args)
{
    Console.WriteLine("-------主线程启动-------");
    Task<int> task = GetStrLengthAsync();
    Console.WriteLine("主线程继续执行");
    Console.WriteLine("Task返回的值" + task.Result);
    Console.WriteLine("-------主线程结束-------");
}

static async Task<int> GetStrLengthAsync()
{
    Console.WriteLine("GetStrLengthAsync方法开始执行");
    //此处返回的<string>中的字符串类型,而不是Task<string>
    string str = await GetString();
    Console.WriteLine("GetStrLengthAsync方法执行结束");
    return str.Length;
}

static Task<string> GetString()
{
   //Console.WriteLine("GetString方法开始执行")
    return Task<string>.Run(() =>
    {
        Thread.Sleep(2000);
        return "GetString的返回值";
    });
}

async用来修饰方法,表明这个方法是异步的,声明的方法的返回类型必须为:void,Task或Task<TResult>。

await必须用来修饰Task或Task<TResult>,而且只能出现在已经用async关键字修饰的异步方法中。通常情况下,async/await成对出现才有意义,

看看运行结果:

图片 8

可以看出来,main函数调用GetStrLengthAsync方法后,在await之前,都是同步执行的,直到遇到await关键字,main函数才返回继续执行。

那么是否是在遇到await关键字的时候程序自动开启了一个后台线程去执行GetString方法呢?

现在把GetString方法中的那行注释加上,运行的结果是:

图片 9

大家可以看到,在遇到await关键字后,没有继续执行GetStrLengthAsync方法后面的操作,也没有马上反回到main函数中,而是执行了GetString的第一行,以此可以判断await这里并没有开启新的线程去执行GetString方法,而是以同步的方式让GetString方法执行,等到执行到GetString方法中的Task<string>.Run()的时候才由Task开启了后台线程!

那么await的作用是什么呢?

可以从字面上理解,上面提到task.wait可以让主线程等待后台线程执行完毕,await和wait类似,同样是等待,等待Task<string>.Run()开始的后台线程执行完毕,不同的是await不会阻塞主线程,只会让GetStrLengthAsync方法暂停执行。

那么await是怎么做到的呢?有没有开启新线程去等待?

图片 10

只有两个线程(主线程和Task开启的线程)!至于怎么做到的(我也不知道……>_<),大家有兴趣的话研究下吧!

有没有感觉这是个循环?没错,这就是个循环。这也就是为什么大家不怎么用他们的原因。这个循环很讨厌,那么怎么破除这个循环呢?

using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading;using System.Threading.Tasks;namespace ConsoleApp1{ class Program { static void Main(string[] args) { TestMain(); } static void TestMain() { Console.Out.Write("Startn"); GetValueAsync(); Console.Out.Write; Console.ReadKey(); } static async Task GetValueAsync() { await Task.Run=> { Thread.Sleep; for(int i = 0; i < 5; ++i) { Console.Out.WriteLine(String.Format("From task : {0}", i)); } }); Console.Out.WriteLine("Task End"); } }}

4.IAsyncResult

IAsyncResult自.NET1.1起就有了,包含可异步操作的方法的类需要实现它,Task类就实现了该接口

图片 11

在不借助于Task的情况下怎么实现异步呢?

class Program
{
    static void Main(string[] args)
    {
        Console.WriteLine("主程序开始--------------------");
        int threadId;
        AsyncDemo ad = new AsyncDemo();
        AsyncMethodCaller caller = new AsyncMethodCaller(ad.TestMethod);

        IAsyncResult result = caller.BeginInvoke(3000,out threadId, null, null);
        Thread.Sleep(0);
        Console.WriteLine("主线程线程 {0} 正在运行.",Thread.CurrentThread.ManagedThreadId)
        //会阻塞线程,直到后台线程执行完毕之后,才会往下执行
        result.AsyncWaitHandle.WaitOne();
        Console.WriteLine("主程序在做一些事情!!!");
        //获取异步执行的结果
        string returnValue = caller.EndInvoke(out threadId, result);
        //释放资源
        result.AsyncWaitHandle.Close();
        Console.WriteLine("主程序结束--------------------");
        Console.Read();
    }
}
public class AsyncDemo
{
    //供后台线程执行的方法
    public string TestMethod(int callDuration, out int threadId)
    {
        Console.WriteLine("测试方法开始执行.");
        Thread.Sleep(callDuration);
        threadId = Thread.CurrentThread.ManagedThreadId;
        return String.Format("测试方法执行的时间 {0}.", callDuration.ToString());
    }
}
public delegate string AsyncMethodCaller(int callDuration, out int threadId);

关键步骤就是红色字体的部分,运行结果:

图片 12

和Task的用法差异不是很大!result.AsyncWaitHandle.WaitOne()就类似Task的Wait。

【很简单,await等待的是线程,不是函数。】

在我的计算机上,执行该程序得到以下结果:

 5.Parallel

最后说一下在循环中开启多线程的简单方法:

Stopwatch watch1 = new Stopwatch();
watch1.Start();
for (int i = 1; i <= 10; i++)
{
    Console.Write(i + ",");
    Thread.Sleep(1000);
}
watch1.Stop();
Console.WriteLine(watch1.Elapsed);

Stopwatch watch2 = new Stopwatch();
watch2.Start();

//会调用线程池中的线程
Parallel.For(1, 11, i =>
{
    Console.WriteLine(i + ",线程ID:" + Thread.CurrentThread.ManagedThreadId);
    Thread.Sleep(1000);
});
watch2.Stop();
Console.WriteLine(watch2.Elapsed);

运行结果:

图片 13

循环List<T>:

List<int> list = new List<int>() { 1, 2, 3, 4, 5, 6, 6, 7, 8, 9 };
Parallel.ForEach<int>(list, n =>
{
    Console.WriteLine(n);
    Thread.Sleep(1000);
});

执行Action[]数组里面的方法:

Action[] actions = new Action[] { 
   new Action(()=>{
       Console.WriteLine("方法1");
   }),
    new Action(()=>{
       Console.WriteLine("方法2");
   })
};
Parallel.Invoke(actions);

不理解吗?没关系,接着看下去。

StartEndFrom task : 0

6.异步的回调

为了简洁(偷懒),文中所有Task<TResult>的返回值都是直接用task.result获取,这样如果后台任务没有执行完毕的话,主线程会等待其执行完毕。这样的话就和同步一样了,一般情况下不会这么用。简单演示一下Task回调函数的使用:

Console.WriteLine("主线程开始");
Task<string> task = Task<string>.Run(() => {
    Thread.Sleep(2000); 
    return Thread.CurrentThread.ManagedThreadId.ToString(); 
});
//会等到任务执行完之后执行
task.GetAwaiter().OnCompleted(() =>
{
    Console.WriteLine(task.Result);
});
Console.WriteLine("主线程结束");
Console.Read();

执行结果:

图片 14

OnCompleted中的代码会在任务执行完成之后执行!

另外task.ContinueWith()也是一个重要的方法:

Console.WriteLine("主线程开始");
Task<string> task = Task<string>.Run(() => {
    Thread.Sleep(2000); 
    return Thread.CurrentThread.ManagedThreadId.ToString(); 
});

task.GetAwaiter().OnCompleted(() =>
{
    Console.WriteLine(task.Result);
});
task.ContinueWith(m=>{Console.WriteLine("第一个任务结束啦!我是第二个任务");});
Console.WriteLine("主线程结束");
Console.Read();

执行结果:

图片 15

ContinueWith()方法可以让该后台线程继续执行新的任务。

Task的使用还是比较灵活的,大家可以研究下,好了,以上就是全部内容了,篇幅和能力都有限,希望对大家有用!

 

Thread,Task,Async/Await,IAsyncResult
的那些事儿!, 说起异步,Thread,Task,async/await,IAsyncResult
这些东西肯定是绕不开的,今天就来依次…

下面从头来讲解,首先看这么一组对比

From task : 1From task : 2From task : 3From task : 4Task End

public static int NoAsyncTest()
{
   return 1;
}
public static async Task<int> AsyncTest()
{ 
  return 1;
}

下面来分析该程序的执行流程:

 async Task<int>等于int

  1. Main()调用TestMain(),执行流转入TestMain();

这意味着我们在正常调用这两个函数时,他们是等效的。那么用async
Task<int>来修饰int目的是什么呢?

  1. 打印Start
  2. 调用GetValueAsync(),执行流转入GetValueAsync(),注意此处是同步调用;
  3. 执行Task.Run(),生成一个新的线程并执行,同时立即返回一个Task对象;
  4. 由于调用Task.Run()时,是以await作为修饰的,因此是一个异步调用,上下文环境保存第4步中返回的Task对象,在此处发生调用流阻塞,而当前的调用语句便是调用流阻塞点,于是发生调用流阻塞返回,执行流回到AysncCall()的GetValueAsync()处,并执行下一步

目的是为了让这个方法这样被调用 await
AsyncTest(),但直接这样调用,并不会开启线程,那这样费劲的修饰是不是就没什么意义了呢。

第5步之后就不好分析了,因为此时已经新建了一个线程用来执行后台线程,如果计算机速度够快,那么由于新建的线程代码中有一个Thread.Sleep;,因此线程会被阻塞,于是主线程会赶在新建的线程恢复执行之前打印End然后Console.ReadKey()在这里我假设发生的是这个情况,然后进入下面的步骤

当然不是,那什么时候会让 await AsyncTest()有意义呢?

  1. 新的线程恢复执行,打印0 1 2 3 4
    5
    ,线程执行结束,Task对象的IsCompleted变成true

我们接着往下看,修改AsyncTest如下。然后,此时再调用await
AsyncTest(),你会神奇的发现,依然没有卵用。。。

  1. 此时执行流跳转到调用流阻塞点,即从调用流阻塞点恢复执行流,发生了调用流阻塞异步完成跳转,于是打印Task End
  2. 程序执行流结束;

Excute方法正常执行,而AsyncTest内运行的线程,自己执行自己的。

仔细研究以上流程,可以发现async/await最重要的地方就是调用流阻塞点,这里的阻塞并不是阻塞的线程,而是阻塞的程序执行流。整个过程就像是一个食客走进一间饭馆点完菜,但是厨师说要等半个小时才做好,于是先给这个食客开了张单子让他先去外面逛一圈,等时间到了会通知他然后他再拿这张票来吃饭(调用流阻塞异步完成跳转);整个过程中这个食客并没有在饭馆做下来等,而是又去干了别的事情了。在这里,await就是用来指定调用流阻塞点的关键字,而async则是用来标识某个方法可以被调用流阻塞的关键字。

You can leave a response, or trackback from your own site.

Leave a Reply

网站地图xml地图