hbase性能调优

首先我们简单回顾下整个写入流程

client api ==> RPC ==>  server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to  filesystem

整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。最后由负责处理RPC的handler取出请求完成写入操作。写入会先写WAL文件,然后再写一份到内存中,也就是memstore模块,当满足条件时,memstore才会被flush到底层文件系统,形成HFile。


 

当写入过快时会遇见什么问题?

写入过快时,memstore的水位会马上被推高。
你可能会看到以下类似日志:

RegionTooBusyException: Above memstore limit, regionName=xxxxx ...

这个是Region的memstore占用内存大小超过正常的4倍,这时候会抛异常,写入请求会被拒绝,客户端开始重试请求。当达到128M的时候会触发flush
memstore,当达到128M *
4还没法触发flush时候会抛异常来拒绝写入。两个相关参数的默认值如下:

hbase.hregion.memstore.flush.size=128M
hbase.hregion.memstore.block.multiplier=4

或者这样的日志:

regionserver.MemStoreFlusher: Blocking updates on hbase.example.host.com,16020,1522286703886: the global memstore size 1.3 G is >= than blocking 1.3 G size
regionserver.MemStoreFlusher: Memstore is above high water mark and block 528ms

这是所有region的memstore内存总和开销超过配置上限,默认是配置heap的40%,这会导致写入被阻塞。目的是等待flush的线程把内存里的数据flush下去,否则继续允许写入memestore会把内存写爆

hbase.regionserver.global.memstore.upperLimit=0.4  # 较旧版本,新版本兼容
hbase.regionserver.global.memstore.size=0.4 # 新版本

当写入被阻塞,队列会开始积压,如果运气不好最后会导致OOM,你可能会发现JVM由于OOM
crash或者看到如下类似日志:

ipc.RpcServer: /192.168.x.x:16020 is unable to read call parameter from client 10.47.x.x
java.lang.OutOfMemoryError: Java heap space

HBase这里我认为有个很不好的设计,捕获了OOM异常却没有终止进程。这时候进程可能已经没法正常运行下去了,你还会在日志里发现很多其它线程也抛OOM异常。比如stop可能根本stop不了,RS可能会处于一种僵死状态。


  13)、hbase.regionserver.regionSplitLimit:控制最大的region数量,超过则不可以进行split操作,默认是Integer.MAX,可设置为1,禁止自动的split,通过人工,或者写脚本在集群空闲时执行。如果不禁止自动的split,则当region大小超过hbase.hregion.max.filesize时会触发split操作(具体的split有一定的策略,不仅仅通过该参数控制,前期的split会考虑region数据量和memstore大小),每次flush或者compact之后,regionserver都会检查是否需要Split,split会先下线老region再上线split后的region,该过程会很快,但是会存在两个问题:1、老region下线后,新region上线前client访问会失败,在重试过程中会成功但是如果是提供实时服务的系统则响应时长会增加;2、split后的compact是一个比较耗资源的动作。

上述配置都需要人工干预,如果干预不及时server可能已经OOM了,这时候有没有更好的控制方法?
hbase.ipc.server.max.callqueue.size = 1024 * 1024 * 1024 # 1G

直接限制队列堆积的大小。当堆积到一定程度后,事实上后面的请求等不到server端处理完,可能客户端先超时了。并且一直堆积下去会导致OOM,1G的默认配置需要相对大内存的型号。当达到queue上限,客户端会收到CallQueueTooBigException 然后自动重试。通过这个可以防止写入过快时候把server端写爆,有一定反压作用。线上使用这个在一些小型号稳定性控制上效果不错。

阅读原文

  7)、hbase.regionserver.global.memstore.lowerLimit:默认值0.35,RS的所有memstore占用内存在总内存中的lower比例,当达到该值,则会从整个RS中找出最需要flush的region进行flush,配置时需结合memstore.upperLimit和block
cache的配置。

如何避免RS OOM?

一种是加快flush速度:

hbase.hstore.blockingWaitTime = 90000 ms
hbase.hstore.flusher.count = 2
hbase.hstore.blockingStoreFiles = 10

当达到hbase.hstore.blockingStoreFiles配置上限时,会导致flush阻塞等到compaction工作完成。阻塞时间是hbase.hstore.blockingWaitTime,可以改小这个时间。hbase.hstore.flusher.count可以根据机器型号去配置,可惜这个数量不会根据写压力去动态调整,配多了,非导入数据多场景也没用,改配置还得重启。

同样的道理,如果flush加快,意味这compaction也要跟上,不然文件会越来越多,这样scan性能会下降,开销也会增大。

hbase.regionserver.thread.compaction.small = 1
hbase.regionserver.thread.compaction.large = 1

增加compaction线程会增加CPU和带宽开销,可能会影响正常的请求。如果不是导入数据,一般而言是够了。好在这个配置在云HBase内是可以动态调整的,不需要重启。

ZK调优:

 
2、dfs.data.dir:dn数据存放地址,每个磁盘配置一个路径,这样可以大大提高并行读写的能力

 
3、hbase.zookeeper.property.maxClientCnxns:zk的最大连接数,默认为300,可配置上千

                 
c、合理的设计rowkey,在设计rowkey时需充分的理解现有业务并合理预见未来业务,不合理的rowkey设计将导致极差的hbase操作性能;

 
4、dfs.datanode.handler.count:dn节点RPC的处理线程数,默认为3,需提高,比如:20

  6)、hbase.regionserver.global.memstore.upperLimit:默认值0.4,RS所有memstore占用内存在总内存中的upper比例,当达到该值,则会从整个RS中找出最需要flush的region进行flush,直到总内存比例降至该数限制以下,并且在降至限制比例以下前将阻塞所有的写memstore的操作,在以写为主的集群中,可以调大该配置项,不建议太大,因为block
cache和memstore
cache的总大小不会超过0.8,而且不建议这两个cache的大小总和达到或者接近0.8,避免OOM,在偏向写的业务时,可配置为0.45,memstore.lowerLimit保持0.35不变,在偏向读的业务中,可调低为0.35,同时memstore.lowerLimit调低为0.3,或者再向下0.05个点,不能太低,除非只有很小的写入操作,如果是兼顾读写,则采用默认值即可。

 

 

 

 
9、dfs.datanode.failed.volumes.tolerated:在启动时会导致dn挂掉的坏磁盘数量,默认为0,即有一个磁盘坏了,就挂掉dn,可以不调整。

  4、client应用读写分离

 
8、dfs.datanode.du.reserved:每块磁盘保留的空余空间,应预留一些给非hdfs文件使用,默认值为0

 

 

 

 

 
5、dfs.datanode.max.xcievers:dn同时处理文件的上限,默认为256,需提高,比如:8192

 

  4)、hbase.hstore.compactionThreshold:HStore的storeFile数量>=
compactionThreshold配置的值,则可能会进行compact,默认值为3,可以调大,比如设置为6,在定期的major
compact中进行剩下文件的合并。

   
读和写分离,位于不同的tomcat实例,数据先写入redis队列,再异步写入hbase,如果写失败再回存redis队列,先读redis缓存的数据(如果有缓存,需要注意这里的redis缓存不是redis队列),如果没有读到再读hbase。

 

  8)、file.block.cache.size:RS的block
cache的内存大小限制,默认值0.25,在偏向读的业务中,可以适当调大该值,具体配置时需试hbase集群服务的业务特征,结合memstore的内存占比进行综合考虑。

  2)、hbase.hregion.max.filesize 配置region大小,0.94.12版本默认是10G,region的大小与集群支持的总数据量有关系,如果总数据量小,则单个region太大,不利于并行的数据处理,如果集群需支持的总数据量比较大,region太小,则会导致region的个数过多,导致region的管理等成本过高,如果一个RS配置的磁盘总量为3T*12=36T数据量,数据复制3份,则一台RS服务器可以存储10T的数据,如果每个region最大为10G,则最多1000个region,如此看,94.12的这个默认配置还是比较合适的,不过如果要自己管理split,则应该调大该值,并且在建表时规划好region数量和rowkey设计,进行region预建,做到一定时间内,每个region的数据大小在一定的数据量之下,当发现有大的region,或者需要对整个表进行region扩充时再进行split操作,一般提供在线服务的hbase集群均会弃用hbase的自动split,转而自己管理split。

  
1)、hbase.regionserver.handler.count:该设置决定了处理RPC的线程数量,默认值是10,通常可以调大,比如:150,当请求内容很大(上MB,比如大的put、使用缓存的scans)的时候,如果该值设置过大则会占用过多的内存,导致频繁的GC,或者出现OutOfMemory,因此该值不是越大越好。

  5)、 hbase.hstore.blockingStoreFiles:HStore的storeFile的文件数大于配置值,则在flush
memstore前先进行split或者compact,除非超过hbase.hstore.blockingWaitTime配置的时间,默认为7,可调大,比如:100,避免memstore不及时flush,当写入量大时,触发memstore的block,从而阻塞写操作。

 

                 f、视场景开启bloomfilter,优化读性能。

 

                 
 b、 开启lzo或者snappy压缩,压缩会消耗一定的CPU,但是,磁盘IO和网络IO将获得极大的改善,大致可以压缩4~5倍;

2、其它调优

开始阻塞:

    
2)、如果是类似全表扫描这种查询,或者定期的任务,则可以设置scan的setCacheBlocks为false,避免无用缓存;

  9)、hbase.hregion.memstore.flush.size:默认值128M,单位字节,超过将被flush到hdfs,该值比较适中,一般不需要调整。

二、Client端调优

                   a、如果不需要多版本,则应设置version=1;

 

   
当hbase集群不可用,或者某个RS不可用时,因为HBase的重试次数和超时时间均比较大(为保证正常的业务访问,不可能调整到比较小的值,如果一个RS挂了,一次读或者写,经过若干重试和超时可能会持续几十秒,或者几分钟),所以一次操作可能会持续很长时间,导致tomcat线程被一个请求长时间占用,tomcat的线程数有限,会被快速占完,导致没有空余线程做其它操作,读写分离后,写由于采用先写redis队列,再异步写hbase,因此不会出现tomcat线程被占满的问题,
应用还可以提供写服务,如果是充值等业务,则不会损失收入,并且读服务出现tomcat线程被占满的时间也会变长一些,如果运维介入及时,则读服务影响也比较有限。

  2、zookeeper数量:至少5个节点。给每个zookeeper
1G左右的内存,最好有独立的磁盘。
(独立磁盘可以确保zookeeper不受影响).如果集群负载很重,不要把Zookeeper和RegionServer运行在同一台机器上面。就像DataNodes

TaskTrackers一样,只有超过半数的zk存在才会提供服务,比如:共5台,则最多只运行挂2台,配置4台与3台一样,最多只运行挂1台。

  1、dfs.name.dir:
namenode的数据存放地址,可以配置多个,位于不同的磁盘并配置一个NFS远程文件系统,这样nn的数据可以有多个备份

  3、设置合理的超时时间和重试次数,具体的内容会在后续的blog中详细讲解。

 

 
1、zookeeper.session.timeout:默认值3分钟,不可配置太短,避免session超时,hbase停止服务,线上生产环境由于配置为1分钟,出现过2次该原因导致的hbase停止服务,也不可配置太长,如果太长,当rs挂掉,zk不能快速知道,从而导致master不能及时对region进行迁移。

You can leave a response, or trackback from your own site.

Leave a Reply

网站地图xml地图